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Abstract
A variational approach to the analysis of the natural decay rates and eigenmodes
of cavity-enclosed diffusive fields in general anisotropic and heterogeneous
materials is presented. In the bulk material, diffusivity and volume relaxivity
are accounted for. The interaction of the cavity’s medium with the embedding
material is modeled via a surface relaxivity on the boundary surface. The
pertaining eigenmodes are proven to be orthogonal and to form a complete
expansion of an initially excited diffusive field. In view of the variational
approach, a finite-element type of computation presents itself as the natural
tool for numerics. The resulting implementation on a simplicial mesh allows
for the modeling of cavities of arbitrary shape. To investigate the feasibility of
using the approach in the inverse problem of reconstructing the shape and size
of cavities from measured values of the natural decay rates of the eigenmodes,
we carry out a number of numerical experiments on the forward problem.
They demonstrate the method to be simple and robust, both in 2D and 3D
complex geometries. For a benchmark problem with a known analytic solution,
error estimates are presented. Applications are found in, for example, nuclear
magnetic resonance imaging of subsurface rock pore geometry, biological cell
structure and the analysis of neurological defects in medical diagnostics.

PACS number: 82.56.Lz

1. Introduction

This paper deals with the eigenmodes and their natural decay rates of cavity-enclosed diffusive
fields. In particular, the stationarity properties (in the sense of variational calculus) of the
natural decay rates are discussed. From them, a procedure is constructed that leads to the
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computation of these decay rates as well as of the spatial distribution of the corresponding
eigenmodes over the region occupied by the cavity. Volume or bulk relaxivity of the medium
in the cavity, as well as surface relaxivity on its boundary to model the diffusive interaction
with the cavity’s embedding, are taken into account. General inhomogeneous and anisotropic
diffusion are considered.

Although the diffusion problem under consideration is formulated quite generally, it is
mainly inspired by NMR experiments that are designed to extract configurational information
about objects under interrogation. We mention such diverse applications as pore size and
pore shape distribution in subsurface hydrocarbon reservoirs in the Earth, cell biology and
neuroimaging in medical diagnostics, references to which can be found in recent tutorial
papers [1, 2]. These experiments use applied and internal magnetic field gradients to initialize
the spatially varying distributions of the spin magnetization. Subsequently, they monitor
the evolution (often decay) of the spatial modulation as a function of diffusion time and
in dependence on the spatial patterns. These techniques have allowed measurements of
fundamental geometric parameters of the pore network, such as surface-to-volume ratio and
pore sizes. It would be highly desirable to extend these methods to obtain more detailed
information on pore geometry, such as pore shape, pore–pore distance and pore connectivity.
Such properties are embedded in the diffusive eigenmodes that are the focus of this paper.
The availability of a high-speed computer algorithm to solve the associated forward problem
for arbitrary pore shapes will be critical in guiding further experimental development. The
stationarity property of the natural decay rates of the cavity modes provides the basis for a
highly effective finite-element type of algorithm that allows for the generation of data for cavity
shapes that are not amenable to analytic methods (such as spheres and circular cylinders).

For NMR imaging of cavity size and shape, it is desirable to represent the diffusive field
of the spin magnetization in terms of a small number of eigenmodes [2]. As stated above,
eigenmodes, and their decay rates, for simple pore shapes can be calculated analytically
[3, 4], but pores in natural materials are mostly of irregular shapes. One approach to evaluate
the eigenmodes in such a case is to express the diffusion equation in the time Laplace-
transform domain (see equation (19)) and then make a finite-difference approximation of the
spatial differential operator on a rectangular grid [5]. This procedure results in a standard
matrix eigenproblem that can efficiently be solved by standard methods. The disadvantage
of this approach comes with irregular shapes, where the necessity to express the boundary
conditions accurately on a rectangular finite-difference grid leads to excessive grid refinement
and thus to an excessive increase in computation time. The method that we present is based
on the physical property of stationarity of the natural decay rates and is thus of a variational
nature. Computationally, it leads to an algorithm of the finite-element type. Implementation
of this algorithm on a simplicial, i.e., triangular (2D) or tetrahedral (3D) grid, allows for an
accurate modeling of irregular boundaries without undue mesh refinement. The simplicity and
the robustness of the method are illustrated by presenting results that are obtained by applying
it to sample cavities of a highly irregular shape. The accuracy of the method is analyzed by
comparing the numerical results with the analytical ones for a simple shape.

2. Formulation of the problem

The cavity under consideration occupies the bounded subdomain D of a three-dimensional
space R

3. Its closed boundary surface ∂D is assumed to be piecewise smooth. The outward
unit vector along the normal to ∂D is denoted by ν. The complement of the closure of D in R

3

is denoted by D′. Position in the configuration is specified by the coordinates {x1, x2, x3} with
respect to an orthogonal, Cartesian reference frame with the origin O and the three mutually
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perpendicular base vectors {i1, i2, i3} of unit length each, that, in the indicated order, form a
right-handed system. The corresponding position vector is x = x1i1 + x2i2 + x3i3. The time
coordinate is t. Differentiation with respect to xm is denoted by ∂m; ∂t is a reserved symbol
for differentiation with respect to t.

To indicate the connection with NMR experiments, we start from the Bloch equation with
a constant applied background magnetic field H0 and anisotropic diffusion and spin relaxation
terms included (see the classical paper by Torrey [6])

∂tM (x, t) = γM (x, t) × H0 + [∇ · ↔
D(x) · ∇]M (x, t)

−
↔
β(x) · M (x, t) for x ∈ D, t ∈ R. (1)

In this equation, ∇ = i1∂1 + i2∂2 + i3∂3, γ is the gyromagnetic ratio, M (x, t) is the volume
distribution over the cavity of the magnetization associated with the precession of spins that
are excited out of their equilibrium orientation in the applied static background magnetic field,
↔
D(x) is the diffusivity (or volume or bulk relaxivity), a positive definite tensor of rank 2 that

takes into account the irreversible interaction of the spins with their neighbors and
↔
β(x) is

the spin relaxation tensor. In terms of the transverse and longitudinal spin relaxation rates it
is given by

↔
β(x) = β⊥(x)[

↔
1 −iH0iH0 ] + β‖(x)[iH0iH0 ], (2)

where
↔
1 is the unit tensor, iH0 is the unit vector along H0, β⊥(x) > 0 is the reciprocal of the

spin relaxation time in the plane perpendicular to H0 and β‖(x) > 0 is the reciprocal of the
spin relaxation time parallel to H0.

In NMR experiments, standardly the component of M parallel to H0 is measured.
Denoting this component by M = iH0 · M , the diffusion equation for M(x, t) follows from
equation (1), by taking the inner product with i0 , as

[∇ · ↔
D(x) · ∇]M(x, t) − β(x)M(x, t) − ∂tM(x, t) = 0 for x ∈ D, t ∈ R,

(3)

in which β(x) = β‖(x). On the cavity’s boundary, the diffusive field satisfies either of the
boundary conditions:

Dirichlet problem:

M(x, t) = 0 for x ∈ ∂D, (4)

Neumann problem:

ν(x) · ↔
D(x) · ∇M(x, t) = 0 for x ∈ ∂D (5)

or

Robin problem:

ν(x) · ↔
D(x) · ∇M(x, t) + ζ(x)M(x, t) = 0 for x ∈ ∂D, (6)

in which ζ(x) > 0 is the surface relaxivity (figure 1). This parameter, introduced in
the classical paper by Brownstein and Tarr [3], is representative for the diffusion of spin
magnetization at the boundary surface. (In [3], the parameter is denoted as the ‘surface-like
sink’.)
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Figure 1. Cavity enclosing a diffusive field.

The natural decay rates follow from the properties of the initial-value problem, where we
require

M(x, t) = M0(x) for t = 0, x ∈ D. (7)

The initial/boundary-value problem formulated in equations (3)–(7) has a unique solution.
In an NMR experiment, the magnetic field can be spatially varying in a porous material

due to the magnetic susceptibility contrast between the solid and the pore filling liquid. Such
an inhomogeneous field can significantly affect the dynamics of the transverse magnetization;
however, the dynamics of the longitudinal magnetization is not affected (see equation (3)).
Furthermore, this inhomogeneous field can be used to modulate the initial state of
magnetization (M0(x)) in an experiment, such as the DDIF experiment discussed in [7].

To arrive at an expression for the desired natural decay rates, we subject equation (3) to
the Laplace transformation with respect to time:

M̂(x, s) =
∫ ∞

t=0
exp(−st)M(x, t) dt for s ∈ C, Re(s) > 0. (8)

This leads to

∇ · [
↔
D(x) · ∇M̂(x, s)] − β(x)M̂(x, s) − sM̂(x, s)

= −M0(x) for x ∈ D, s ∈ C, Re(s) > 0, (9)

while equations (4)–(6) transform into

Dirichlet problem:

M̂(x, s) = 0 for x ∈ ∂D, s ∈ C, Re(s) > 0, (10)

Neumann problem:

ν(x) · ↔
D(x) · ∇M̂(x, s) = 0 for x ∈ ∂D, s ∈ C, Re(s) > 0 (11)

and

Robin problem:

ν(x) · ↔
D(x) · ∇M̂(x, s) + ζ(x)M̂(x, s) = 0 for x ∈ ∂D, s ∈ C, Re(s) > 0,

(12)
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respectively. The problem as defined for M̂(x, s) has, for Re(s) > 0, a unique solution. Once
this solution has been constructed, M(x, t) follows from the Bromwich integral representation

M(x, t) = 1

2π i

∫
s∈B

exp(st)M̂(x, s) ds, (13)

where B is any path parallel to the imaginary s-axis in the right half of the complex s-plane,
in which half-plane M̂(x, s) is an analytic function of s.

3. The natural decay rates and their associated diffusive field constituents

Since M̂(x, s) is analytic in the right half of the complex s-plane, it admits an analytic
continuation into the left half of the complex s-plane. In this procedure, we encounter
the singularities of M̂(x, s). We assume that these consist of a denumerable set of simple
poles {sn; n = 1, 2, 3, . . .} with Re(sn) < 0, which we assume to be ordered such that
Re(sn+1) < Re(sn). As a consequence, we can write M̂(x, s) as the partial-fraction
representation

M̂(x, s) =
∞∑

n=1

Mn(x)

s − sn

, (14)

where

Mn(x) = Residues=sn
M̂(x, s). (15)

Upon supplementing, for t > 0, the Bromwich path in equation (13) with a semi-circular arc
at infinity to the left, the application of Jordan’s lemma and the theory of residues leads to the
modal representation

M(x, t) =
[ ∞∑

n=1

Mn(x) exp(snt)

]
H(t) for x ∈ D, (16)

where H(t) is the Heaviside unit step function. In the standard eigenvalue theory of diffusive
initial-value problems in a restricted region, the sequence {sn; n = 1, 2, 3, . . .} is denoted as
the sequence of the natural decay rates.

Now, M(x, t) as given by equation (16) can, in view of equations (3) and (9), be conceived
of as arising from the Laplace transformation of

∇ · [
↔
D(x) · ∇M(x, t)] − β(x)M(x, t) − ∂tM(x, t) = −M0(x)δ(t) for x ∈ D,

(17)

where δ(t) denotes the Dirac delta distribution operative at t = 0. Substitution of equation
(16) into equation (17) leads to

∞∑
n=1

[∇ · [
↔
D(x) · ∇Mn(x)] − β(x)Mn(x) − snMn(x)] exp(snt) = 0

for x ∈ D, t > 0. (18)

By multiplying through successively by exp(−s1t), exp(−s2t), exp(−s3t), . . . , and taking the
limit t → ∞, it follows that Mn(x) must, for n = 1, 2, 3, . . . , satisfy the relation

∇ · [
↔
D(x) · ∇Mn(x)] − β(x)Mn(x) − snMn(x) = 0 for x ∈ D, n = 1, 2, 3, . . . .

(19)
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The application of a similar procedure to the boundary conditions (10)–(12) leads to

Dirichlet problem:

Mn(x) = 0 for x ∈ ∂D, n = 1, 2, 3, . . . , (20)

Neumann problem:

ν(x) · ↔
D(x) · ∇Mn(x) = 0 for x ∈ ∂D, n = 1, 2, 3, . . . (21)

and

Robin problem:

ν(x) · ↔
D(x) · ∇Mn(x) + ζ(x)Mn(x) = 0 for x ∈ ∂D, n = 1, 2, 3, . . . . (22)

So far, the sequence of functions {M1(x),M2(x),M3(x), . . .} is dependent on the initial
field distribution M0(x) out of which they have been constructed. However, equations (19)–
(22) have the structure of a standard eigenvalue problem, associated with the differential
equation (19), in combination with either of the boundary conditions (20)–(22). The properties
of the eigenvalues and the corresponding eigenfunctions of this eigenvalue problem are the
subject of investigation in the following section.

4. The eigenvalue problem associated with the natural decay rates of
eigenmodes in the cavity

Let the sequence of eigenfunctions associated with the sequence of eigenvalues {s1, s2, s3, . . .}
be denoted by {φ1(x), φ2(x), φ3(x), . . .}. Then,

∇ · [
↔
D(x) · ∇φn(x)] − β(x)φn(x) − snφn(x) = 0 for x ∈ D, n = 1, 2, 3, . . . .

(23)

and

Dirichlet problem:

φn(x) = 0 for x ∈ ∂D, n = 1, 2, 3, . . . (24)

Neumann problem:

ν(x) · ↔
D(x) · ∇φn(x) = 0 for x ∈ ∂D, n = 1, 2, 3, . . . (25)

and

Robin problem:

ν(x) · ↔
D(x) · ∇φn(x) + ζ(x)φn(x) = 0 for x ∈ ∂D, n = 1, 2, 3, . . . . (26)

A first relation is obtained by multiplying through in equation (23) by φ∗
n(x), where * denotes

complex conjugate, integrating over the domain D, and applying the divergence theorem. This
leads to∫

∂D
φ∗

nν · ↔
D · ∇φn dA −

∫
D

∇φ∗
n · ↔

D · ∇φn dV −
∫
D

βφ∗
nφn dV − sn

∫
D

φ∗
nφn dV = 0. (27)

Using in the first term on the left-hand side either of the boundary conditions (24)–(26),
it follows that sn is real and negative for all n = 1, 2, 3, . . . . On account of this we can,
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without loss of generality, take the functions φn(x) to be real valued and, accordingly, replace
equation (27) by∫

∂D
φnν · ↔

D · ∇φn dA −
∫
D

∇φn · ↔
D · ∇φn dV −

∫
D

βφnφn dV − sn

∫
D

φnφn dV = 0. (28)

Equation (28) serves as the basis for the investigation into the variational properties of the
natural decay rates to be discussed in the following section. Employing the relevant boundary
conditions, equation (28) yields, for the three boundary-value problems under consideration,

Dirichlet and Neumann problems:∫
D

∇φn · ↔
D · ∇φn dV +

∫
D

βφnφn dV + sn

∫
D

φnφn dV = 0 (29)

and

Robin problem:∫
∂D

ζφnφn dA +
∫
D

∇φn · ↔
D · ∇φn dV +

∫
D

βφnφn dV + sn

∫
D

φnφn dV = 0. (30)

Note that the Dirichlet and Neumann problems lead to the same equations.

5. Variational properties of the natural decay rates

To establish the variational properties of the natural decay rates, we replace, in equations (29)
and (30), φn(x) by φn + εvn(x), where vn(x) is an arbitrary piecewise continuous function
defined on D ∪ ∂D and piecewise continuously differentiable in D, while ε is a variational
parameter. The equality sign in the resulting expressions is preserved by replacing sn by
sn + δsn. Under this procedure, equations (29) and (30) are replaced by

Dirichlet and Neumann problems:∫
D

∇(φn + εvn) · ↔
D · ∇(φn + εvn) dV +

∫
D

β(φn + εvn)(φn + εvn) dV

+ (sn + δsn)

∫
D

(φn + εvn)(φn + εvn) dV = 0 (31)

and

Robin problem:∫
∂D

ζ(φn + εvn)(φn + εvn) dA +
∫
D

∇(φn + εvn) · ↔
D · ∇(φn + εvn) dV

+
∫
D

β(φn + εvn)(φn + εvn) dV + (sn + δsn)

∫
D

(φn + εvn)(φn + εvn) dV = 0,

(32)

respectively. Subsequently, we employ the relation∫
D

∇φn · ↔
D · ∇vn dV =

∫
D

∇ · (vn

↔
D · ∇φn) dV −

∫
D

vn∇ · (
↔
D ·∇φn) dV

=
∫

∂D
vnν · (

↔
D · ∇φn) dA −

∫
D

βvnφn dV − sn

∫
D

vnφn dV , (33)
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where, successively, a vector identity, the divergence theorem and equation (23) have been
used. With the aid of equations (25), (29)–(33), it then follows that

Dirichlet problem:

ε2
∫
D

∇vn · ↔
D · ∇vn dV + ε2

∫
D

βvnvn dV + ε2sn

∫
D

vnvn dV

+ δsn

∫
D

(φn + εvn)(φn + εvn) dV = 0

provided that vn = 0 for x ∈ ∂D, (34)

Neumann problem:

ε2
∫
D

∇vn · ↔
D · ∇vn dV + ε2

∫
D

βvnvn dV + ε2sn

∫
D

vnvn dV

+ δsn

∫
D

(φn + εvn)(φn + εvn) dV = 0 (35)

and

Robin problem:

ε2
∫

∂D
ζvnvn dA + ε2

∫
D

∇vn · ↔
D · ∇vn dV + ε2

∫
D

βvnvn dV

+ ε2sn

∫
D

vnvn dV + δsn

∫
D

(φn + εvn)(φn + εvn) dV = 0. (36)

Since the factor multiplying δsn is of order O(1) as ε → 0, it follows that δsn is of order
O(ε2) as ε → 0. This implies that the expressions for sn resulting from (29) and (30)
are stationary in the sense of the calculus of variations. This stationarity feature can be
exploited in a computational procedure aimed to determine the natural decay rates and their
associated modal diffusive field distributions. Furthermore, since in equations (33)–(35) the
factor multiplying δsn is positive, while the sum of the coefficients multiplying ε2 can be either
positive or negative, depending on the chosen comparison function vn (note that sn < 0), δsn

for ε 
= 0 can be either positive or negative, which implies that the stationary expressions for
sn are of a saddle-point nature.

6. Computational implementation of the variational expressions

The computational implementation of the variational expressions (34)–(36) uses a suitable
sequence of basis functions {ψp(x);p = 1, . . . , N} each member of which satisfies the
conditions laid upon the variational comparison functions vn(x). Tentatively, φn(x) is
represented as

φn(x) =
N∑

p=1

ξ (n)
p ψp(x) for x ∈ D. (37)

This expansion is substituted into equations (29) and (30). With the notations

Apq =
∫
D

ψpψq dV , (38)

Bpq =
∫
D

∇ψp · ↔
D · ∇ψqdV +

∫
D

βψpψqdV (39)
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and

Cpq =
∫

∂D
ζψpψq dV , (40)

this leads to (employing standard matrix notation)

Dirichlet problem:

ξ(n) ·B · ξ(n) + s(N)
n ξ(n) ·A · ξ(n) = 0 provided that ψn(x) = 0 for x ∈ ∂D, (41)

Neumann problem:

ξ(n) ·B · ξ(n) + s(N)
n ξ(n) · A · ξ(n) = 0 (42)

and

Robin problem:

ξ(n) · (B + C) · ξ(n) + s(N)
n ξ(n) · A · ξ(n) = 0, (43)

where the vector ξ(n) contains the elements
{
ξ (n)
p ;p = 1, . . . , N

}
. Applying arbitrary

variations to the expansion coefficients ξ (n)
p and imposing the condition that equations (41)–

(43) be stationary under these variations, we are led to the relations

Dirichlet problem:

B · ξ(n) + s(N)
n A · ξ(n) = 0 provided that ψn(x) = 0 for x ∈ ∂D, (44)

Neumann problem:

B · ξ(n) + s(N)
n A · ξ(n) = 0 (45)

and

Robin problem:

(B + C) · ξ(n) + s(N)
n A · ξ(n) = 0. (46)

The values of s(N)
n are obtained as the eigenvalues of the pertaining linear equations. All

matrices occurring in equations (44)–(46) are positive definite. The values −s(N)
n are the

natural decay rates that we are after.

7. Orthogonality properties and the completeness relation of the eigenfunctions

The eigenfunctions show certain orthogonality properties and a completeness relation that will
now be discussed.

Upon multiplying equation (23), satisfied by φn(x), by φm(x), multiplying the
corresponding equation satisfied by φm(x) by φn(x), integrating the resulting two equations
over D, applying the divergence theorem, using the pertaining boundary conditions on ∂D and
subtracting the results, we obtain

(sm − sn)

∫
D

φm(x)φn(x) dV = 0. (47)

This yields the orthogonality relation∫
D

φm(x)φn(x) dV = 0 for sm 
= sn. (48)
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In the remainder of our analysis we shall assume that sm 
= sn for m 
= n, i.e., the sequence
of eigenvalues is assumed to be non-degenerate. Using the sequence of eigenfunctions as a
sequence of expansion functions for the solution to equation (9), we employ the Ansatz

M̂(x, s) =
∞∑

m=1

αm(s)φm(x) for x ∈ D. (49)

Upon multiplying equation (9) by φn(x), multiplying equation (23) by M̂(x, s), integrating
the two resulting equations over D, applying the divergence theorem, using the pertaining
boundary conditions on ∂D and subtracting the results, we obtain

(s − sn)

∫
D

φn(x)M̂(x, s) dV =
∫
D

φn(x)M0(x) dV . (50)

Substituting into this relation expansion (49) and using the orthogonality relation (48), we end
up with

(s − sn)αn(s)

∫
D

φn(x)φn(x) dV =
∫
D

φn(x)M0(x) dV , (51)

from which it follows that

αn(s) = 1

s − sn

∫
D φn(x)M0(x) dV∫
D φn(x)φn(x) dV

. (52)

Using this expression in equation (49) and writing the result as

M̂(x, s) =
∫
D

Ĝ(x,x′, s)M0(x
′) dV (x′), (53)

where Ĝ(x,x′, s) is the pertaining s-domain Green function (or propagator [2]) that satisfies

∇ · [
↔
D(x) · ∇Ĝ(x,x′, s)] − β(x)Ĝ(x,x′, s) − sĜ(x,x′, s) = −δ(x − x′)

for x ∈ D, x′ ∈ D, s ∈ C, Re(s) > 0, (54)

we conclude that

Ĝ(x,x′, s) =
∞∑

n=1

1

s − sn

φn(x)φn(x
′)∫

D φn(x′)φn(x′) dV (x′)

for x ∈ D, x′ ∈ D, s ∈ C, Re(s) > 0. (55)

From equations (53)–(55) it follows that the corresponding time-domain result is

M(x, t) =
∫

x′∈D

∫ t

t ′=0
G(x,x′, t ′)M0(x

′)δ(t − t ′) dt ′ dV (x′)

=
∫

x′∈D
G(x,x′, t)M0(x

′) dV (x′), (56)

where G(x,x′, t ′) is the initial-value Green function satisfying

∇ · [
↔
D(x) · ∇G(x,x′, t)] − β(x)G(x,x′, t) − ∂tG(x,x′, t) = −δ(x − x′)δ(t)

for x ∈ D, x′ ∈ D, t ∈ R, (57)

and can be expressed as

G(x,x′, t ′) =
[ ∞∑

n=1

φn(x)φn(x
′)∫

D φn(x)φn(x) dV
exp(snt)

]
H(t). (58)

The property that the Green function can be expressed in terms of the eigenfunctions makes
the sequence of eigenfunctions a complete one [8, pp 65–8].
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Figure 2. Relative error in the natural decay rates and their modal distributions versus the number
of mesh nodes N for the rectangular-domain test example. The modal distributions are normalized
to unit amplitude at x1 = 0, x2 = 0. The natural decay rate indices of the seven plotted curves are
displayed in the lower left in the same order as the left side of the curves.

8. Numerical examples

A computational implementation of the variational expressions was made for 2D and 3D
models in which the domain D is tessellated into simplices and the eigenfunctions φn(x) in D
are expanded in terms of piecewise linear basis functions.

Mesh generation was performed using the Persson and Strang algorithm [9]. This easy-
to-implement algorithm produces high-quality meshes for arbitrary domains, and provides
an easy mechanism for describing the domain shape in two and three dimensions, including
domains with holes. The algorithm includes a mesh-refinement function that describes how
the mesh size should vary in space. The qhull algorithm [10] was used within that algorithm
to perform Delaunay tessellation.

The first example examines the convergence of the eigenmode solutions versus the number
of mesh nodes. Each eigenmode is characterized by its eigenvalue (the negative of the decay
rate) and its spatial distribution (the eigenfunction). In this example, the 2D domain D is
taken to be the rectangle {0 < x1 < L1, 0 < x2 < L2} with a Neumann condition on its

boundary. The parameters are assigned the values
↔
D(x) =

↔
1 , where

↔
1 is the unit tensor of

rank 2 (isotropic diffusion) and β(x) = 1. The analytical solution for this problem can be
found by the method of separation of variables and is obtained as

smn = −1 − π2
(
m2

/
L2

1 + n2/L2
2

)
,

φmn(x) = cos(mπx1/L1) cos(nπx2/L2) for {m, n = 0, 1, 2 . . .}. (59)

For the values L1 = 1.1 and L2 = 1, the relative error in the natural decay rate estimates is
plotted in figure 2 along with the relative maximum error in the modal distribution estimates
versus the number of mesh nodes N. L1 is taken slightly different from L2 to avoid multiple
eigenvalues (degeneracy) within the range of plotted eigenvalues. The relative errors in the
computed natural decay rate all turn out to follow the curve

relative error ∝ N−1.2. (60)

The maximum errors in the modal distributions are also found to follow a power law, be it
with more variety in the exponents than the natural decay rates do. So, the power law for a
representative curve, {m = 1, n = 2}, is found as

maximum error ∝ N−1.0. (61)
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Eigenvalue 324.8 Eigenvalue 604.4 Eigenvalue 799.7

Eigenvalue 274.8 Eigenvalue 284.3 Eigenvalue 286.1

Eigenvalue 2.425 Eigenvalue 6.385 Eigenvalue 145.8

Figure 3. The first nine eigenfunctions and their eigenvalues for a two-dimensional two-pore
porous material example. The horizontal axes correspond to the two spatial dimensions (to scale)
and the vertical axis is the eigenfunction value. Lighter shades indicate larger eigenfunction values.

Eigenvalue 2.012 Eigenvalue 2.012 Eigenvalue 279.9

Eigenvalue 280.3 Eigenvalue 281.6 Eigenvalue 282.

Eigenvalue 786.3 Eigenvalue 788. Eigenvalue 789.9

Figure 4. This is the same example as in figure 3, but with no connection between the two pores.

Using � to represent a characteristic length of a mesh element, N grows as �−2. This leads
to the natural decay rate error formula

relative error ∝ �2.4, (62)
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Figure 5. The first nine eigenfunctions and their eigenvalues for the third example: a 3D model with
eight cubically-packed spherical pores. The interior of the cube is exposed by removing triangles
whose centers lie in 0 � y � 5. The three axes correspond to the three spatial dimensions (to scale)
and the shading indicates the eigenfunction value. Lighter shades indicate larger eigenfunction
values.

which indicates a better than quadratic convergence. This is slightly better than the quadratic
convergence that could be expected from our variational analysis. Although our variational
analysis provides no prediction as to the modal distribution convergence rate, the convergence
rate in the numerical example under consideration was also found to be quadratic.

The next example is a representative of a two-dimensional porous material filled with
water. Here, two circular pores of diameter 10 µm each are interconnected by a narrow channel

of length 10 µm and width 1 µm. The material coefficients are
↔
D(x) = 2000 µm2 s−1

↔
1 ,

β(x) = 0 and ζ(x) = 5 µm s−1. Figure 3 shows the modal distributions and their natural
decay rates for the first nine eigenmodes in this example. The finite-element mesher was
instructed to make the elements within the channel a factor of three smaller in linear dimension
than those in the pores. Note that, because of the presence of surface relaxation, the distribution
of the first eigenmode is not a constant as in our rectangular cavity example with a Neumann
boundary condition. From (58) we see that larger eigenvalues correspond to shorter observation
times, with the eigenmode corresponding to eigenvalue sn decaying by 1/e in characteristic
time t = 1/|sn|. The first nine modes have characteristic times between 1.3 and 410 ms.
For comparison, figure 4 shows the same example, with no channel connecting the pores.
The characteristic times span roughly the same range, 1.3–500 ms, but the eigenmodes
show many degenerate eigenvalues. Comparing the two sets of eigenmodes, some clearly
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reflect the effects of the connectivity of the system. For example, the first two modes of
the uncoupled system are degenerate. The first mode of the coupled system is very similar
to the corresponding one in the uncoupled system. The second mode of the couple system
exhibits an enhanced eigenvalue specifically due to the coupling. As a result, a measurement
of this mode could be important for probing the connectivity of the system. In fact, other
modes are also affected by the coupling, however, the effect is likely weaker for the higher
modes [11].

The third example is a 3D porous material filled with water. The model is 20 × 20 ×
20 µm3 with eight cubically-packed spherical rock grains of 10 µm diameter each. The
material properties are the same as in the previous example. The finite-element mesher was
instructed to perform a smooth transition to smaller elements near the grain contacts. The
resulting eigenmodes are illustrated in figure 5. In this example, the increase in decay-rate
magnitude with increasing mode number is much less rapid than in the previous one. The first
nine modes have characteristic times between 10 and 160 ms. To capture characteristic times
down to 1.3 ms, as in the 2D example, requires the first 59 modes, as compared to nine in the
2D case.

9. Conclusions

We have formulated a variational finite-element approach to the computation of the natural
decay rates and their eigenmodes of cavity-enclosed diffusive fields for general heterogeneous,
anisotropic materials and cavities of arbitrary shape and size. As to the cavity’s interaction at
its boundary, we consider the cases that can be modeled through either Dirichlet, or Neumann,
or Robin boundary conditions. The eigenmodes are proven to be orthogonal and to form a
complete sequence of expansion functions for the time-domain diffusive field. Numerical
experiments demonstrate the method in two and three dimensions to be simple and robust.

The computational method based on our variational analysis is a promising tool for the
recurrent generation of solutions to the forward problem for cavity-enclosed diffusive fields,
in the realm of the inverse problems associated with, for example, a variety of NMR imaging
applications such as the structure of subsurface porous rock, biological cell structure and the
analysis of neurological defects in medical diagnostics.
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